skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schliep, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many hypotheses in the field of phylogenetic comparative biology involve specific changes in the rate or process of trait evolution. This is particularly true of approaches designed to connect macroevolutionary pattern to microevolutionary process. We present a method designed to test whether the rate of evolution of a discrete character has changed in one or more clades, lineages, or time periods. This method differs from other related approaches (such as the ‘covarion’ model) in that the ‘regimes’ in which the rate or process is postulated to have changed are specified a priori by the user, rather than inferred from the data. Similarly, it differs from methods designed to model a correlation between two binary traits in that the regimes mapped onto the tree are fixed. We apply our method to investigate the rate of dewlap color and/or caudal vertebra number evolution in Caribbean and mainland clades of the diverse lizard genus Anolis. We find little evidence to support any difference in the evolutionary process between mainland and island evolution for either character. We also examine the statistical properties of the method more generally and show that it has acceptable type I error, parameter estimation, and power. Finally, we discuss some general issues of frequentist hypothesis testing and model adequacy, as well as the relationship of our method to existing models of heterogeneity in the rate of discrete character evolution on phylogenies. 
    more » « less
  2. The emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal) threatens the diversity of amphibians, particularly in North America where it is projected to invade. Amphibian skin defenses include a mucosal layer containing microorganisms that can potentially modulate host response to pathogens such asBsal. In this study, we focused on the composition of the skin microbiome across life stages of spotted salamanders (Ambystoma maculatum). We also evaluated the stress hormone corticosterone and skin microbiome response to inoculations withBsaland probiotics at both the larval and juvenile developmental stages, and the response to different environmental conditions. Results indicated that both bacterial and fungal communities found on the skin significantly differed in structure and diversity between life stages ofA. maculatum. Exposure to three different probiotics (Bacillus thuringiensis,Chryseobacterium rhizoplanae, andPenicilliumsp.) andBsalevoked shifts in the microbiome of larvae and juveniles, and the metabolite profile of the larval mucosal layer ofA. maculatum. Despite changes in the microbiome, all tested probiotics andBsalwere unable to persist on the skin. Larval bacterial microbiomes shifted in response toBsalandB. thuringiensiswith no significant impacts on antifungal function or bacteria richness, however fungi strongly responded toBsalandB. thuringiensisapplication. This indicates that developmental shifts in the microbiome can be initiated by microbial applications such asB. thuringiensis, a widely used mosquito larvicide. Overall, experimental results indicate that life stage, growth and development, and environmental conditions appeared to be the main factors driving changes in the amphibian skin microbiome and potential anti-Batrachochytriumfunction. 
    more » « less
  3. Silvestro, Daniele (Ed.)
  4. null (Ed.)
    Abstract The use of different sources of evidence has been recommended in order to conduct species delimitation analyses to solve taxonomic issues. In this study, we use a maximum likelihood framework to combine morphological and molecular traits to study the case of Xylodon australis (Hymenochaetales, Basidiomycota) using the locate.yeti function from the phytools R package. Xylodon australis has been considered a single species distributed across Australia, New Zealand and Patagonia. Multi-locus phylogenetic analyses were conducted to unmask the actual diversity under X . australis as well as the kinship relations respect their relatives. To assess the taxonomic position of each clade, locate.yeti function was used to locate in a molecular phylogeny the X . australis type material for which no molecular data was available using morphological continuous traits. Two different species were distinguished under the X . australis name, one from Australia–New Zealand and other from Patagonia. In addition, a close relationship with Xylodon lenis , a species from the South East of Asia, was confirmed for the Patagonian clade. We discuss the implications of our results for the biogeographical history of this genus and we evaluate the potential of this method to be used with historical collections for which molecular data is not available. 
    more » « less